login
A375898
E.g.f. satisfies A(x) = 1 / (2 - exp(x * A(x)^(1/3)))^3.
2
1, 3, 21, 234, 3627, 72498, 1780953, 52013118, 1762754655, 68060512458, 2950869169125, 142006584810918, 7513205987292243, 433548334132153698, 27102592662130603857, 1824854382978573444174, 131676307468686605671623, 10137713081262046098901050
OFFSET
0,2
FORMULA
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A052894.
E.g.f.: A(x) = ( (1/x) * Series_Reversion(x * (2 - exp(x))) )^3.
a(n) = (3/(n+3)!) * Sum_{k=0..n} (n+k+2)! * Stirling2(n,k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x*(2-exp(x)))/x)^3))
(PARI) a(n) = 3*sum(k=0, n, (n+k+2)!*stirling(n, k, 2))/(n+3)!;
CROSSREFS
Cf. A226515.
Sequence in context: A078586 A179331 A138903 * A302703 A334262 A375900
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 01 2024
STATUS
approved