login
A375864
Prime numbers that cannot be written as the sum of a prime number and a superior highly composite number.
0
2, 3, 307, 911, 1201, 1259, 1693, 2179, 2381, 2927, 3191, 3499, 3557, 4201, 4441, 4721, 5573, 6121, 7207, 8219, 8273, 8537, 8627, 8999, 9137, 9203, 9811, 10133, 10357, 11597, 12211, 12343, 13217, 13421, 13921, 15053, 15401, 15551, 15959, 15991, 16411, 16561, 17117, 17207
OFFSET
1,1
EXAMPLE
The prime number 37 can be written as the sum of prime number 31 and superior highly composite number 6 and thus is not in this sequence.
PROG
(Python)
from sympy import *
SHCN = [2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720]
for x in range(3, 16000, 2):
waysFound = 0
if isprime(x):
iterC = 0
while iterC < len(SHCN) and SHCN[iterC] < x:
if isprime(x - SHCN[iterC]):
waysFound += 1
iterC += 1
if waysFound == 0:
print(x)
CROSSREFS
KEYWORD
nonn
AUTHOR
Walter Robinson, Aug 31 2024
STATUS
approved