login
A375812
Expansion of e.g.f. 1/(1 - (exp(x^3) - 1)/x^2)^2.
1
1, 2, 6, 24, 144, 1080, 9360, 92400, 1038240, 13063680, 181137600, 2744280000, 45145900800, 801313793280, 15256927445760, 310158565516800, 6705376386508800, 153609543947059200, 3716764672074854400, 94715288771578675200, 2535525218048030208000
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A375796.
a(n) = n! * Sum_{k=0..floor(n/3)} (n-3*k+1)! * Stirling2(n-2*k,n-3*k)/(n-2*k)!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(exp(x^3)-1)/x^2)^2))
(PARI) a(n) = n!*sum(k=0, n\3, (n-3*k+1)!*stirling(n-2*k, n-3*k, 2)/(n-2*k)!);
CROSSREFS
Sequence in context: A326780 A365976 A356858 * A375808 A258325 A191006
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 29 2024
STATUS
approved