login
A375679
Expansion of e.g.f. 1 / (1 + x^2 * log(1 - x))^3.
2
1, 0, 0, 18, 36, 120, 4860, 33264, 241920, 5598720, 72364320, 879500160, 18172978560, 331463508480, 5726430597888, 126134466796800, 2836325702246400, 62773403361177600, 1562890149787392000, 41009994647421972480, 1090182759179092992000
OFFSET
0,4
FORMULA
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A351503.
a(n) = (n!/2) * Sum_{k=0..floor(n/3)} (k+2)! * |Stirling1(n-2*k,k)|/(n-2*k)!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2*log(1-x))^3))
(PARI) a(n) = n!*sum(k=0, n\3, (k+2)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/2;
CROSSREFS
Cf. A375663.
Sequence in context: A327774 A335784 A347889 * A376437 A115550 A061713
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 23 2024
STATUS
approved