login
A375664
Expansion of e.g.f. 1 / (1 - x * (exp(x^2) - 1))^2.
4
1, 0, 0, 12, 0, 120, 2160, 1680, 120960, 1481760, 6350400, 240166080, 2754259200, 31152401280, 894303970560, 11769588230400, 228232766361600, 5845147711603200, 98290727395660800, 2502848611354291200, 63417766359467520000, 1376904298716724377600
OFFSET
0,4
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A375588.
a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k+1)! * Stirling2(k,n-2*k)/k!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x-x*exp(x^2))^2))
(PARI) a(n) = n!*sum(k=0, n\2, (n-2*k+1)!*stirling(k, n-2*k, 2)/k!);
CROSSREFS
Sequence in context: A331911 A307841 A257949 * A375680 A376443 A376441
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 23 2024
STATUS
approved