Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #27 Aug 26 2024 11:43:33
%S 1,3,23,6,18,24,69,10,71,22,68,25,41,69,125,15,61,73,104,28,36,68,110,
%T 33,115,48,3060,69,95,131,2951,21,133,67,92,76,108,108,297,37,3007,45,
%U 203,76,105,117,2914,45,147,119,183,57,70,3081,3060,82,228,102,284
%N a(n) is the cardinality of the sumset of the Collatz trajectory of n.
%C "Sumset" of a set S = {s_i} means the set of sums of pairs, s_i + s_j with i <= j.
%H Markus Sigg, <a href="/A375650/b375650.txt">Table of n, a(n) for n = 1..10000</a>
%e The Collatz trajectory of 3 is {3,10,5,16,8,4,2,1}, which has the sumset {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,24,26,32} of size 23, so a(3) = 23.
%o (PARI) a(n) = {
%o my(T = List([n]), S = Set());
%o while(n > 1, n = if(n % 2 == 0, n/2, 3*n+1); listput(T, n));
%o for(i = 1, #T,
%o for(j = i, #T,
%o S = setunion(S, Set([T[i] + T[j]]));
%o )
%o );
%o #S
%o };
%o print(vector(59, n, a(n)));
%o (Python)
%o def a(n):
%o T, S = [n], set()
%o while n > 1:
%o if n & 1 == 0: n >>= 1
%o else: n = 3 * n + 1
%o T.append(n)
%o for i in range(len(T)):
%o for j in range(i, len(T)):
%o S.add(T[i] + T[j])
%o return len(S)
%o print([a(n) for n in range(1, 60)]) # _DarĂo Clavijo_, Aug 24 2024
%Y A375006 is the list of those n for which a(n) < A008908(n) * (A008908(n) + 1) / 2.
%K nonn
%O 1,2
%A _Markus Sigg_, Aug 24 2024