login
A375631
Expansion of e.g.f. exp(2*x) / (1 - x^2/2 * exp(x)).
1
1, 2, 5, 17, 76, 422, 2809, 21821, 193708, 1934468, 21465529, 262007033, 3488768650, 50326173458, 781808322481, 13012772925293, 231029881905736, 4358082011900744, 87045479653871377, 1835177785479753545, 40727378713879346206, 949039029924830652662
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} (k+2)^(n-2*k)/(2^k*(n-2*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(2*x)/(1-x^2/2*exp(x))))
(PARI) a(n) = n!*sum(k=0, n\2, (k+2)^(n-2*k)/(2^k*(n-2*k)!));
CROSSREFS
Sequence in context: A129591 A328439 A328504 * A279208 A099825 A014288
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 21 2024
STATUS
approved