login
A375535
a(n) = n - A075860(n).
0
1, 0, 0, 2, 0, 1, 0, 6, 6, 3, 0, 7, 0, 11, 13, 14, 0, 13, 0, 13, 14, 9, 0, 19, 20, 24, 24, 25, 0, 23, 0, 30, 30, 15, 30, 31, 0, 31, 37, 33, 0, 37, 0, 31, 43, 41, 0, 43, 42, 43, 44, 50, 0, 49, 53, 53, 44, 27, 0, 53, 0, 59, 56, 62, 60, 64, 0, 49, 67, 67, 0, 67, 0, 72, 73, 69, 72, 73
OFFSET
1,4
COMMENTS
If p is a prime number, then a(p)=0.
EXAMPLE
For n=15, a(15) = 15-2 = 13.
MAPLE
f := proc(n)
option remember:
if isprime(n) then
n
else
procname(convert(numtheory:-factorset(n), `+`))
end if
end proc:
f(1) := 0:
seq(n - f(n), n = 1..100);
PROG
(Python)
from sympy import primefactors
def a(n, pn):
if n == pn:
return n
else:
return a(sum(primefactors(n)), n)
print([i-a(i, None) for i in range(1, 100)])
CROSSREFS
Cf. A075860.
Sequence in context: A335022 A249732 A076694 * A095403 A011328 A048277
KEYWORD
nonn
AUTHOR
Rafik Khalfi, Aug 18 2024
STATUS
approved