login
A375396
Numbers not divisible by the square of any prime factor except (possibly) the least. Hooklike numbers.
9
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
OFFSET
1,2
COMMENTS
Also numbers k such that the minima of the maximal anti-runs in the weakly increasing sequence of prime factors of k (with multiplicity) are identical. Here, an anti-run is a sequence with no adjacent equal parts, and the minima of the maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the least term of each. Note the prime factors can alternatively be taken in weakly decreasing order.
The complement is a superset of A036785 = products of a squarefree number and a prime power.
The asymptotic density of this sequence is (1/zeta(2)) * (1 + Sum_{p prime} (1/(p^2-p)) / Product_{primes q <= p} (1 + 1/q) = 0.884855661165... . - Amiram Eldar, Oct 26 2024
EXAMPLE
The prime factors of 300 are {2,2,3,5,5}, with maximal anti-runs {{2},{2,3,5},{5}}, with minima (2,2,5), so 300 is not in the sequence.
MATHEMATICA
Select[Range[100], SameQ@@Min /@ Split[Flatten[ConstantArray@@@FactorInteger[#]], UnsameQ]&]
PROG
(PARI) is(k) = if(k > 1, my(e = factor(k)[, 2]); vecprod(e) == e[1], 1); \\ Amiram Eldar, Oct 26 2024
CROSSREFS
The complement is a superset of A036785.
For maxima instead of minima we have A065200, counted by A034296.
The complement for maxima is A065201, counted by A239955.
Partitions of this type are counted by A115029.
A version for compositions is A374519, counted by A374517.
Also positions of identical rows in A375128, sums A374706, ranks A375400.
The complement is A375397, counted by A375405.
For distinct instead of identical minima we have A375398, counts A375134.
The complement for distinct minima is A375399, counted by A375404.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A011782 comps counts compositions.
A number's prime factors (A027746, reverse A238689) have sum A001414, min A020639, max A006530.
A number's prime indices (A112798, reverse A296150) have sum A056239, min A055396, max A061395.
Both have length A001222, distinct A001221.
Sequence in context: A242031 A335376 A109427 * A325360 A325400 A342523
KEYWORD
nonn,changed
AUTHOR
Gus Wiseman, Aug 16 2024
STATUS
approved