login
A375296
Numbers k such that the leaders of maximal weakly increasing runs in the reverse of the k-th composition in standard order (row k of A228351) are not strictly decreasing.
5
13, 25, 27, 29, 41, 45, 49, 51, 53, 54, 55, 57, 59, 61, 77, 81, 82, 83, 89, 91, 93, 97, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 115, 117, 118, 119, 121, 123, 125, 141, 145, 153, 155, 157, 161, 162, 163, 165, 166, 167, 169, 173, 177, 179, 181, 182
OFFSET
1,1
COMMENTS
The leaders of maximal weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Also numbers k such that the k-th composition in standard order (row k of A066099) matches the dashed patterns 23-1 or 12-1.
EXAMPLE
The sequence together with corresponding compositions begins:
13: (1,2,1)
25: (1,3,1)
27: (1,2,1,1)
29: (1,1,2,1)
41: (2,3,1)
45: (2,1,2,1)
49: (1,4,1)
51: (1,3,1,1)
53: (1,2,2,1)
54: (1,2,1,2)
55: (1,2,1,1,1)
57: (1,1,3,1)
59: (1,1,2,1,1)
61: (1,1,1,2,1)
MATHEMATICA
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
Select[Range[0, 100], !Greater@@First/@Split[Reverse[stc[#]], LessEqual]&]
- or -
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
Select[Range[0, 300], MatchQ[stc[#], {___, y_, z_, ___, x_, ___}/; x<=y<z]&] (*23-1 or 12-1*)
CROSSREFS
For leaders of identical runs we have A335486, reverse A335485.
Matching 1-32 only gives A375138, reverse A375137, both counted by A374636.
Compositions of this type are counted by A375140, complement A188920.
The reverse version is A375295.
A003242 counts anti-runs, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A374637 counts compositions by sum of leaders of weakly increasing runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099, reverse A228351.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Run-length transform is A333627, sum A070939.
Sequence in context: A018948 A256475 A335374 * A375295 A335466 A186403
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 13 2024
STATUS
approved