login
A375280
Largest value in the trajectory of n in the A375265 map.
5
1, 2, 3, 4, 16, 6, 52, 8, 9, 16, 52, 12, 40, 52, 16, 16, 52, 18, 88, 20, 52, 52, 160, 24, 88, 40, 27, 52, 88, 30, 9232, 32, 52, 52, 160, 36, 112, 88, 40, 40, 9232, 52, 196, 52, 45, 160, 9232, 48, 148, 88, 52, 52, 160, 54, 9232, 56, 88, 88, 304, 60, 184, 9232, 63
OFFSET
1,2
COMMENTS
By definition the trajectory ends when 1 is reached, so a(1) = 1.
FORMULA
a(n) = max{A375266(n,k) for 1 <= k <= A375267(n) + 1}.
EXAMPLE
a(10) = 16 because 16 is the largest value in the trajectory 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1.
MATHEMATICA
A375265[n_] := Which[Divisible[n, 3], n/3, Divisible[n, 2], n/2, True, 3*n + 1];
Array[Max[NestWhileList[A375265, #, # > 1 &]] &, 100]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo Xausa, Aug 09 2024
STATUS
approved