login
A375270
Numbers of the form p^Fibonacci(2*k), where p is a prime and k >= 0.
2
1, 2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 256
OFFSET
1,2
COMMENTS
Differs from A186285 by having the terms 1, 2^8 = 256, 3^8 = 6561, ..., and not having the terms 2^9 = 512, 3^9 = 19683, ... .
The partial products of the this sequence (A375271) are the sequence of numbers with record numbers of Zeckendorf-infinitary divisors (A318465).
LINKS
FORMULA
a(n) = A375271(n)/A375271(n-1) for n >= 2.
EXAMPLE
The positive even-indexed Fibonacci numbers are 1, 3, 8, 21, ..., so the sequence includes 2^1 = 2, 2^3 = 8, 2^8 = 256, ..., 3^1 = 3, 3^3 = 27, 3^8 = 6561, ... .
MATHEMATICA
fib[lim_] := Module[{s = {}, f = 1, k = 2}, While[f <= lim, AppendTo[s, f]; k += 2; f = Fibonacci[k]]; s];
seq[max_] := Module[{s = {1}, p = 2, e = 1, f = {}}, While[e > 0, e = Floor[Log[p, max]]; If[f == {}, f = fib[e], f = Select[f, # <= e &]]; s = Join[s, p^f]; p = NextPrime[p]]; Sort[s]]; seq[256]
PROG
(PARI) fib(lim) = {my(s = List(), f = 1, k = 2); while(f <= lim, listput(s, f); k += 2; f = fibonacci(k)); Vec(s); }
lista(pmax) = {my(s = [1], p = 2, e = 1, f = []); while(e > 0, e = logint(pmax, p); if(#f == 0, f = fib(e), f = select(x -> x <= e, f)); s = concat(s, apply(x -> p^x, f)); p = nextprime(p+1)); vecsort(s); }
CROSSREFS
Subsequence of A115975.
Subsequences: A000040, A030078, A179645.
Cf. A000045, A001906, A050376, A186285, A318465, A375271 (partial products).
Sequence in context: A246551 A268391 A174895 * A186285 A375886 A190855
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 09 2024
STATUS
approved