login
A375121
Number of odd reduced Latin squares of order n.
1
0, 0, 0, 0, 16, 3552, 8332800
OFFSET
1,5
FORMULA
a(n) + A375141(n) = A000315(n).
EXAMPLE
For n=5 the 16 squares are:
[[1, 2, 3, 4, 5],[2, 1, 4, 5, 3],[3, 4, 5, 1, 2],[4, 5, 2, 3, 1],[5, 3, 1, 2, 4]];
[[1, 2, 3, 4, 5],[2, 1, 4, 5, 3],[3, 4, 5, 2, 1],[4, 5, 1, 3, 2],[5, 3, 2, 1, 4]];
[[1, 2, 3, 4, 5],[2, 1, 5, 3, 4],[3, 5, 4, 1, 2],[4, 3, 2, 5, 1],[5, 4, 1, 2, 3]];
[[1, 2, 3, 4, 5],[2, 1, 5, 3, 4],[3, 5, 4, 2, 1],[4, 3, 1, 5, 2],[5, 4, 2, 1, 3]];
[[1, 2, 3, 4, 5],[2, 3, 1, 5, 4],[3, 4, 5, 2, 1],[4, 5, 2, 1, 3],[5, 1, 4, 3, 2]];
[[1, 2, 3, 4, 5],[2, 3, 1, 5, 4],[3, 5, 4, 1, 2],[4, 1, 5, 2, 3],[5, 4, 2, 3, 1]];
[[1, 2, 3, 4, 5],[2, 3, 4, 5, 1],[3, 1, 5, 2, 4],[4, 5, 2, 1, 3],[5, 4, 1, 3, 2]];
[[1, 2, 3, 4, 5],[2, 3, 5, 1, 4],[3, 1, 4, 5, 2],[4, 5, 1, 2, 3],[5, 4, 2, 3, 1]];
[[1, 2, 3, 4, 5],[2, 4, 1, 5, 3],[3, 5, 2, 1, 4],[4, 1, 5, 3, 2],[5, 3, 4, 2, 1]];
[[1, 2, 3, 4, 5],[2, 4, 5, 1, 3],[3, 1, 2, 5, 4],[4, 5, 1, 3, 2],[5, 3, 4, 2, 1]];
[[1, 2, 3, 4, 5],[2, 4, 5, 1, 3],[3, 5, 1, 2, 4],[4, 3, 2, 5, 1],[5, 1, 4, 3, 2]];
[[1, 2, 3, 4, 5],[2, 4, 5, 3, 1],[3, 5, 1, 2, 4],[4, 1, 2, 5, 3],[5, 3, 4, 1, 2]];
[[1, 2, 3, 4, 5],[2, 5, 1, 3, 4],[3, 4, 2, 5, 1],[4, 3, 5, 1, 2],[5, 1, 4, 2, 3]];
[[1, 2, 3, 4, 5],[2, 5, 4, 1, 3],[3, 4, 1, 5, 2],[4, 3, 5, 2, 1],[5, 1, 2, 3, 4]];
[[1, 2, 3, 4, 5],[2, 5, 4, 3, 1],[3, 1, 2, 5, 4],[4, 3, 5, 1, 2],[5, 4, 1, 2, 3]];
[[1, 2, 3, 4, 5],[2, 5, 4, 3, 1],[3, 4, 1, 5, 2],[4, 1, 5, 2, 3],[5, 3, 2, 1, 4]].
CROSSREFS
Sequence in context: A281821 A003773 A217021 * A087519 A367535 A222917
KEYWORD
nonn,more,hard
AUTHOR
Carolin Hannusch, Jul 31 2024
STATUS
approved