login
A375070
Decimal expansion of the sagitta of a regular octagon with unit side length.
8
9, 9, 4, 5, 6, 1, 8, 3, 6, 8, 9, 8, 2, 9, 0, 0, 3, 4, 5, 5, 7, 9, 8, 8, 1, 1, 3, 2, 2, 3, 3, 8, 1, 1, 4, 2, 9, 8, 9, 2, 5, 2, 5, 0, 6, 6, 0, 7, 9, 5, 4, 9, 0, 9, 6, 0, 5, 5, 8, 4, 9, 7, 9, 1, 2, 7, 1, 4, 8, 0, 2, 2, 3, 0, 1, 3, 8, 5, 3, 1, 5, 2, 6, 6, 5, 9, 9, 5, 3, 0
OFFSET
-1,1
LINKS
Eric Weisstein's World of Mathematics, Regular Polygon.
Eric Weisstein's World of Mathematics, Sagitta
FORMULA
Equals tan(Pi/16)/2 = A343060/2.
Equals A285871 - A174968.
EXAMPLE
0.09945618368982900345579881132233811429892525066...
MATHEMATICA
First[RealDigits[Tan[Pi/16]/2, 10, 100]]
CROSSREFS
Cf. A285871 (circumradius), A174968 (apothem), A090488 (area).
Cf. sagitta of other polygons with unit side length: A020769 (triangle), A174968 (square), A375068 (pentagon), A375069 (hexagon), A374972 (heptagon), A375153 (9-gon), A375189 (10-gon), A375192 (11-gon), A375194 (12-gon).
Cf. A343060.
Sequence in context: A019893 A346585 A117023 * A013668 A143302 A202540
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Jul 30 2024
STATUS
approved