login
A374810
Values k such that the two-player impartial {0,1}-Toggle game on a path P(k+2) = v(1)v(2)...v(k+2) with a (1^k,0,1)-weight assignment is a second-player winning game.
3
1, 6, 7, 12, 13, 18, 23, 24, 38, 39, 44, 45, 50, 51, 56, 62, 77, 115, 121, 153, 312, 333, 350, 427, 553, 554, 579
OFFSET
1,2
COMMENTS
The two-player impartial {0,1}-Toggle game is played on a simple connected graph G where each vertex is assigned an initial weight of 0 or 1.
A Toggle move consists of selecting a vertex v and switching its weight as well as the weight of each of its neighbors. This move is legal only provided the weight of vertex v is 1 and the total sum of the vertex weights decreases.
In the special case G = P(k+2), a (1^k, 0, 1)-weight assignment is one in which vertex v(k+1) is assigned weight 0 and all remaining vertices are assigned weight 1.
REFERENCES
E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays, Vol. 1, CRC Press, 2001.
LINKS
K. Barker, M. DeStefano, E. Fiorini, M. Gohn, J. Miller, J. Roeder, and T. W. H. Wong, Generalized Impartial Two-player Pebbling Games on K3 and C4, Journal of Integer Sequences, 27(5), 2024.
Matthew Cohen, Python
E. Fiorini, M. Lind, A. Woldar, and T. W. H. Wong, Characterizing Winning Positions in the Impartial Two-Player Pebbling Game on Complete Graphs, Journal of Integer Sequences, 24(6), 2021.
EXAMPLE
For n = 6, the {0,1}-Toggle game on P(8) with a (1,1,1,1,1,1,0,1)-weight assignment is a second-player winning game.
For n = 12, the {0,1}-Toggle game on P(14) with a (1,1,1,1,1,1,1,1,1,1,1,1,0,1)-weight assignment is a second-player winning game.
PROG
(Python) # See Cohen link.
KEYWORD
nonn,more
STATUS
approved