login
a(n) = Product_{k=0..n} L(k)+2, where L=A000032 (Lucas numbers).
2

%I #4 Jul 31 2024 11:28:16

%S 4,12,60,360,3240,42120,842400,26114400,1279605600,99809236800,

%T 12476154600000,2507707074600000,812497092170400000,

%U 424935979205119200000,359070902428325724000000,490490852717092938984000000,1083494293652058302215656000000

%N a(n) = Product_{k=0..n} L(k)+2, where L=A000032 (Lucas numbers).

%C a(n+1)/a(n) is an integer for n>=0, so (a(n)) is a divisibility sequence.

%t w[n_] := Product[LucasL[k] + 2, {k, 0, n}]

%t Table[w[n], {n, 0, 20}]

%Y Cf. A000032, A374654, A374657.

%K nonn

%O 0,1

%A _Clark Kimberling_, Jul 28 2024