login
Decimal expansion of zeta(-11).
0

%I #13 Feb 16 2025 08:34:07

%S 2,1,0,9,2,7,9,6,0,9,2,7,9,6,0,9,2,7,9,6,0,9,2,7,9,6,0,9,2,7,9,6,0,9,

%T 2,7,9,6,0,9,2,7,9,6,0,9,2,7,9,6,0,9,2,7,9,6,0,9,2,7,9,6,0,9,2,7,9,6,

%U 0,9,2,7,9,6,0,9,2,7,9,6,0,9,2,7,9,6,0,9,2,7

%N Decimal expansion of zeta(-11).

%H Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Particular_values_of_the_Riemann_zeta_function">Particular values of the Riemann zeta function</a>.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,1).

%H <a href="/wiki/Index_to_constants#Start_of_section_Z">Index entries for constants related to zeta</a>.

%F Equals 691/32760.

%F Equals -(1/12)*A027641(12)/A027642(12).

%e 0.021092796092796092796092796092796092796092796092796092796092...

%t First[RealDigits[Zeta[-11], 10, 100]]

%Y Cf. A027641, A266262.

%Y Cf. zeta(2)-zeta(20): A013661, A002117, A013662, A013663, A013664, A013665, A013666, A013667, A013668, A013669, A013670, A013671, A013672, A013673, A013674, A013675, A013676, A013677, A013678.

%Y Cf. (for some negative odd integer arguments): A021016, A021028, A021136, A021256.

%K nonn,cons,changed

%O -1,1

%A _Paolo Xausa_, Jul 09 2024