login
A374363
a(n) is the greatest term t <= n of A005836 such that n - t also belongs to A005836.
3
0, 1, 1, 3, 4, 4, 3, 4, 4, 9, 10, 10, 12, 13, 13, 12, 13, 13, 9, 10, 10, 12, 13, 13, 12, 13, 13, 27, 28, 28, 30, 31, 31, 30, 31, 31, 36, 37, 37, 39, 40, 40, 39, 40, 40, 36, 37, 37, 39, 40, 40, 39, 40, 40, 27, 28, 28, 30, 31, 31, 30, 31, 31, 36, 37, 37, 39, 40
OFFSET
0,4
COMMENTS
To compute a(n): in the ternary expansion of n, 2's by 1's.
LINKS
FORMULA
a(n) = T(n, A120880(k)-1).
a(n) = n - A374362(n).
a(n) <= n with equality iff n belongs to A005836.
a(n) = A005836(1+A289831(n)).
EXAMPLE
The first terms, in decimal and in ternary, are:
n a(n) ter(n) ter(a(n))
-- ---- ------ ---------
0 0 0 0
1 1 1 1
2 1 2 1
3 3 10 10
4 4 11 11
5 4 12 11
6 3 20 10
7 4 21 11
8 4 22 11
9 9 100 100
10 10 101 101
11 10 102 101
12 12 110 110
13 13 111 111
14 13 112 111
15 12 120 110
PROG
(PARI) a(n) = fromdigits(apply(d -> [0, 1, 1][1+d], digits(n, 3)), 3)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jul 06 2024
STATUS
approved