login
A374359
a(1) = 2, a(n) = 5 for n > 1.
2
2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
OFFSET
1,1
COMMENTS
Decimal expansion of 23/9, which is an approximation of the 5th root of 109 (A374357).
Simple continued fraction expansion of (1 + sqrt(29))/14 = (1 + A010484)/14.
LINKS
Greg Martin and Winnie Miao, abc triples, arXiv:1409.2974 [math.NT], 2014. See p. 5.
FORMULA
G.f.: x*(2 + 3*x)/(1 - x).
a(n) = a(n-1) for n > 2.
E.g.f.: 5*exp(x) - 3*x - 5.
EXAMPLE
2.555555555555555555555555555555555555555...
MATHEMATICA
LinearRecurrence[{1}, {2, 5}, 100]
CROSSREFS
Cf. A374357 (decimal expansion of the 5th root of 109), A374358 (continued fraction of the 5th root of 109).
Cf. A010484.
Essentially the same as A021022 and A010716.
Sequence in context: A240947 A023398 A374357 * A186501 A235452 A171438
KEYWORD
nonn,cofr,cons,easy,less
AUTHOR
Stefano Spezia, Jul 06 2024
STATUS
approved