OFFSET
0,5
COMMENTS
In other words, we partition n into pairs of fibbinary numbers whose binary expansions have no common 1's and list the corresponding fibbinary numbers to get the n-th row.
LINKS
Rémy Sigrist, Table of n, a(n) for n = 0..8118 (rows for n = 0..1023 flattened)
FORMULA
EXAMPLE
Triangle T(n, k) begins:
n n-th row
-- -----------
0 0
1 0, 1
2 0, 2
3 1, 2
4 0, 4
5 0, 1, 4, 5
6 2, 4
7 2, 5
8 0, 8
9 0, 1, 8, 9
10 0, 2, 8, 10
11 1, 2, 9, 10
12 4, 8
13 4, 5, 8, 9
14 4, 10
15 5, 10
16 0, 16
PROG
(PARI) row(n) = { my (r = [0], e, x, y, b); while (n, x = y = 0; e = valuation(n, 2); for (k = 0, oo, if (bittest(n, e+k), n -= b = 2^(e+k); [x, y] = [y + b, x], r = concat([v + y | v <- r], [v + x | v <- r]); break; ); ); ); return (r); }
CROSSREFS
KEYWORD
nonn,base,tabf
AUTHOR
Rémy Sigrist, Jul 06 2024
STATUS
approved