%I #8 Jul 07 2024 07:33:17
%S 0,2,6,18,52,145,400,1093
%N a(n) = ceiling(Integral_{t=0..n} floor(exp(t)) dt). The Waldvogel sequence.
%C Named after Prof. Jörg Waldvogel (Swiss mathematician). For the variant using the floor of the approximation see A374185.
%C Is this, apart from a shift, the same as A245285?
%H Pedro Gonnet, <a href="https://doi.org/10.48550/arXiv.1003.4629">A Review of Error Estimation in Adaptive Quadrature</a>, ACM Computing Surveys, 2012, arXiv:1003.4629 [cs.NA]. (p. 31, 32.)
%Y Variant: A374185.
%Y Cf. A245285, A128104.
%K nonn,more,hard
%O 0,2
%A _Peter Luschny_, Jul 07 2024