login
a(n) = ceiling(Integral_{t=0..n} floor(exp(t)) dt). The Waldvogel sequence.
1

%I #8 Jul 07 2024 07:33:17

%S 0,2,6,18,52,145,400,1093

%N a(n) = ceiling(Integral_{t=0..n} floor(exp(t)) dt). The Waldvogel sequence.

%C Named after Prof. Jörg Waldvogel (Swiss mathematician). For the variant using the floor of the approximation see A374185.

%C Is this, apart from a shift, the same as A245285?

%H Pedro Gonnet, <a href="https://doi.org/10.48550/arXiv.1003.4629">A Review of Error Estimation in Adaptive Quadrature</a>, ACM Computing Surveys, 2012, arXiv:1003.4629 [cs.NA]. (p. 31, 32.)

%Y Variant: A374185.

%Y Cf. A245285, A128104.

%K nonn,more,hard

%O 0,2

%A _Peter Luschny_, Jul 07 2024