login
A374067
a(n) is the permanent of the symmetric Toeplitz matrix of order n whose element (i,j) equals the |i-j|-th prime or 1 if i = j.
10
1, 1, 5, 42, 753, 22969, 1226225, 98413280, 11551199289, 1828335971613, 379823112871605, 102232301626742202, 34359550765856135217, 14289766516805617273497, 7224166042347461997365713, 4334493536305030883929928032, 3046742350470292308074313518937, 2492781304663024301187012794633153
OFFSET
0,3
COMMENTS
Conjecture: a(n) is the minimal permanent of an n X n symmetric Toeplitz matrix having 1 on the main diagonal and all the first n-1 primes off-diagonal. - Stefano Spezia, Jul 08 2024
EXAMPLE
a(4) = 753:
[1, 2, 3, 5]
[2, 1, 2, 3]
[3, 2, 1, 2]
[5, 3, 2, 1]
MATHEMATICA
a[n_]:=Permanent[Table[ If[i == j, 1, Prime[Abs[i - j]]], {i, 1, n}, {j, 1, n}]]; Join[{1}, Array[a, 17]]
PROG
(PARI) a(n) = matpermanent(matrix(n, n, i, j, if (i==j, 1, prime(abs(i-j))))); \\ Michel Marcus, Jun 27 2024
CROSSREFS
Cf. A071078 (determinant), A306457, A318173.
Sequence in context: A204235 A188405 A216334 * A350930 A368352 A132487
KEYWORD
nonn
AUTHOR
Stefano Spezia, Jun 27 2024
STATUS
approved