login
A374058
Expansion of Product_{k>=1} (1 - x^(3*k-2)) * (1 - x^(3*k)).
4
1, -1, 0, -1, 0, 1, -1, 1, 0, 0, 1, 0, -1, 1, -1, 1, 0, -1, 0, 0, -1, 1, 0, -1, 1, -1, 0, 1, -1, 0, 1, -1, 1, 1, -1, 0, 0, -1, 2, 0, -1, 1, 0, -1, 2, -2, 0, 1, -1, 0, 1, -1, 0, 1, -2, 1, 1, -2, 1, 0, -2, 2, 0, -2, 2, -1, 0, 2, -1, -1, 1, -1, -1, 3, -2, 0, 2, -2, 1, 2, -3, 1, 1, -2, 2, 1
OFFSET
0,39
FORMULA
a(0) = 1; a(n) = -(1/n) * Sum_{k=1..n} A082051(k) * a(n-k).
a(0) = 1; a(n) = -Sum_{k=1..n} A035360(k) * a(n-k).
a(n) = Sum_{k=0..n} A010815(k) * A035386(n-k).
MATHEMATICA
nmax = 85; CoefficientList[Series[Product[(1 - x^(3 k - 2)) (1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Plus @@ Select[Divisors[k], Mod[#, 3] != 2 &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 85}]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 27 2024
STATUS
approved