login
A374048
a(n) = 1 if A328846(n) is even, otherwise 0, where A328846 is the second Fibonacci based variant of arithmetic derivative.
5
1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1
OFFSET
0
FORMULA
a(n) = A059841(A328846(n)).
For all n >= 1, a(A000040(n)) = A079978(n-1) = [n == 1 (mod 3)], where [ ] is the Iverson bracket.
PROG
(PARI)
A328846(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(2+primepi(f[i, 1]))/f[i, 1]));
A374048(n) = !(A328846(n)%2);
CROSSREFS
Characteristic function of A374049, whose complement A374050 gives the indices of 0's.
Cf. also A374045.
Sequence in context: A351957 A342004 A284881 * A090174 A165556 A348292
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 28 2024
STATUS
approved