OFFSET
3,1
COMMENTS
The n-th row of A177028 are all integers k for which n is a k-gonal number.
As an example: row 10 of A177028 contain 3 and 10, because 10 is a 10-gonal number but also a triangular number.
-3n/2 < a(n) <= n.
a(n) = n if n is an odd prime (A065091), an odd composite number in A274967, or even numbers in A274968.
a(n) = 0: 231, tested up to 150000.
a(n) < 0: 441, 540, 561, 1089, 1128, 1296, 1521, 1701, 1716, 1881, 2016, 2211, 2541, 2556, 2601, ..., .
a(n) is negative less than 1% of the time.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 3..150000
EXAMPLE
a(15) = 6, because the 15th row of A177028 is {3,6,15} -> {3,9} -> {6};
a(36) = 6, because the 36th row of A177028 is {3,4,13,36} -{1,9,23} - {8,14} -> {6};
a(225) = 37, because the 225th row of A177028 is {4,8,24,76,225} -> {4,16,52,149} -> {12,36,97} -> {24,61} -> {37};
a(561) = -82, because the 561st row of A177028 is {3,6,12,39,188,561} -> {3,6,27,149,373} -> {3,21,122,224} -> {18,101,102}, {83,1} -> {-82}; etc.
MATHEMATICA
planeFigurateQ[n_, r_] := IntegerQ[((r -4) + Sqrt[(r -4)^2 + 8n (r -2)])/(2 (r -2))]; a[n_] := Block[{pg = Select[ Range[3, n], planeFigurateQ[n, #] &]}, Differences[pg, Length@ pg - 1][[1]]]; Array[a, 73, 3]
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Robert G. Wilson v, Jun 22 2024
STATUS
approved