Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #34 Jan 06 2025 15:38:11
%S 3,10,7,10,14,25,84,243,288,291,292,292,292,292,292,292,292,292,292,
%T 292,292,292,292,292,292,292,292,292,292,292,292,292,292,292,292,351,
%U 292,292,292,292,292,292,292,292,292,292,292,292,292,292,292,292,292,292
%N a(n) = maximum element in the continued fraction for Pi truncated to n decimal digits after the decimal point.
%H Paolo Xausa, <a href="/A373866/b373866.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%e For n = 5, Pi truncated to 5 digits after the decimal point is 3.14159. The corresponding continued fraction is [3, 7, 15, 1, 25, 1, 7], whose maximum element is 25.
%t A373866[n_] := Max[ContinuedFraction[Floor[Pi*10^n]/10^n]];
%t Array[A373866, 100, 0]
%Y Cf. A000796, A001203, A081836 (analogous for phi), A081837 (analogous for e).
%K nonn,base,look
%O 0,1
%A _Paolo Xausa_, Jun 19 2024