login
A373861
a(n) = Sum_{k=0..n} k^(2*n) * |Stirling1(n,k)|.
1
1, 1, 17, 923, 107724, 22369324, 7385651720, 3597082257152, 2449105468081600, 2238708422118782376, 2661994302285967390224, 4014423110086784061347592, 7519716937006429200213786240, 17194081369411703462470895338272
OFFSET
0,3
FORMULA
E.g.f.: Sum_{k>=0} (-log(1 - k^2*x))^k / k!.
MATHEMATICA
Unprotect[Power]; Power[0, 0] = 1; Protect[Power]; nmax=13; Range[0, nmax]!CoefficientList[Series[Sum[(-Log[1 - k^2*x])^k / k!, {k, 0, nmax}], {x, 0, nmax}], x] (* Stefano Spezia, Jun 19 2024 *)
PROG
(PARI) a(n) = sum(k=0, n, k^(2*n)*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 19 2024
STATUS
approved