OFFSET
1,1
COMMENTS
The initial 5 is the only prime in this sequence (for a proof, consider Henry Bottomley's Sep 27 2006 formula for A024451), the next three terms 9, 15, 25 are only semiprimes (see A087112 and A370129), and there are 21 terms with three prime factors in total: 30, 42, 45, 63, 75, 105, 110, 125, 147, 165, 175, 231, 245, 275, 343, 363, 385, 539, 605, 847, 1331 (see A369979, A370138 and A373844). In general, there should be only a finite amount of terms x such that A001222(x) = k, for any k >= 1.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..1565
PROG
(PARI)
\\ Uses the code from A373842, or its precomputed data:
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])); };
(PARI)
A002620(n) = ((n^2)>>2);
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
\\ The following routine checks that n is not a prime larger than five, is in A048103, and in case n is odd, rules out cases that certainly cannot give A373842(n) <= n:
prefilter_for_A373848(n) = if(n < 3 || (isprime(n) && n > 5), 0, my(f=factor(n), k=#f~, lpf=f[1, 1], p=f[k, 1], m=f[k, 2]); for(i=1, k, if(f[i, 2]>=f[i, 1], return(0))); if(2==lpf, return(1)); while(p>lpf, p = precprime(p-1); m *= p; if(m>n, return(0))); (1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 20 2024
STATUS
approved