%I #19 Jun 18 2024 07:11:55
%S 2,1,3,5,3,4,4,9,3,3,2,4,8,0,0,4,2,2,8,0,4,6,4,7,5,2,7,9,6,8,3,7,0,6,
%T 7,7,8,8,1,0,8,7,9,3,6,6,0,1,6,4,9,4,0,0,4,0,7,7,3,1,4,4,2,9,1,0,8,7,
%U 0,3,3,0,0,1,4,9,6,8,8,3,7,8,0,6,6,5,8,3,6,5,1,2,2,2,2,2,0,5,9,6,5
%N Decimal expansion of Pi^(1/2)*Gamma(1/20)/(10*Gamma(11/20)).
%C Constants from generalized Pi integrals: the case of n=20.
%H Takayuki Tatekawa, <a href="/A373534/b373534.txt">Table of n, a(n) for n = 1..10001</a>
%F Equals 2*Integral_{x=0..1} dx/sqrt(1-x^20).
%F Equals (2*sqrt(Pi)*Gamma(21/20))/Gamma(11/20). - _Peter Luschny_, Jun 17 2024
%e 2.135344933248004228046475279683...
%p (2*sqrt(Pi)*GAMMA(21/20))/GAMMA(11/20): evalf(%, 102); # _Peter Luschny_, Jun 17 2024
%t RealDigits[2*Sqrt[Pi]/20*Gamma[1/20]/Gamma[11/20], 10, 5001][[1]]
%Y Cf. A085565, A113477, A262427, A371824, A371881, A371930, A372111, A372327.
%K nonn,cons
%O 1,1
%A _Takayuki Tatekawa_, Jun 08 2024