login
A373534
Decimal expansion of Pi^(1/2)*Gamma(1/20)/(10*Gamma(11/20)).
1
2, 1, 3, 5, 3, 4, 4, 9, 3, 3, 2, 4, 8, 0, 0, 4, 2, 2, 8, 0, 4, 6, 4, 7, 5, 2, 7, 9, 6, 8, 3, 7, 0, 6, 7, 7, 8, 8, 1, 0, 8, 7, 9, 3, 6, 6, 0, 1, 6, 4, 9, 4, 0, 0, 4, 0, 7, 7, 3, 1, 4, 4, 2, 9, 1, 0, 8, 7, 0, 3, 3, 0, 0, 1, 4, 9, 6, 8, 8, 3, 7, 8, 0, 6, 6, 5, 8, 3, 6, 5, 1, 2, 2, 2, 2, 2, 0, 5, 9, 6, 5
OFFSET
1,1
COMMENTS
Constants from generalized Pi integrals: the case of n=20.
LINKS
FORMULA
Equals 2*Integral_{x=0..1} dx/sqrt(1-x^20).
Equals (2*sqrt(Pi)*Gamma(21/20))/Gamma(11/20). - Peter Luschny, Jun 17 2024
EXAMPLE
2.135344933248004228046475279683...
MAPLE
(2*sqrt(Pi)*GAMMA(21/20))/GAMMA(11/20): evalf(%, 102); # Peter Luschny, Jun 17 2024
MATHEMATICA
RealDigits[2*Sqrt[Pi]/20*Gamma[1/20]/Gamma[11/20], 10, 5001][[1]]
KEYWORD
nonn,cons
AUTHOR
Takayuki Tatekawa, Jun 08 2024
STATUS
approved