login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of 3*zeta(3)/2.
0

%I #23 Jun 11 2024 07:05:59

%S 1,8,0,3,0,8,5,3,5,4,7,3,9,3,9,1,4,2,8,0,9,9,6,0,7,2,4,2,2,6,7,1,7,4,

%T 9,8,6,1,4,7,4,7,9,4,3,8,5,1,0,7,4,8,3,2,2,6,8,8,4,0,7,3,3,3,0,1,2,7,

%U 5,7,3,0,8,6,7,9,4,6,9,6,3,5,2,7,9,6,8,3,8,1,0

%N Decimal expansion of 3*zeta(3)/2.

%H R. Barbieri, J. A. Mignaco and E. Remiddi, <a href="https://dx.doi.org/10.1007/BF02728545">Electron form factors up to fourth order. I.</a>, Il Nuovo Cim. 11A (4) (1972) 824-864, Table II (2).

%H Chenli Li, Wenchang Chu, <a href="http://dx.doi.org/10.3390/math10162980">Improper integrals involving powers of Inverse Trigonometric and hyperbolic Functions</a>, Mathematics 10 (16) (2022) 2980

%F Equals Integral_{x=0..1} log^2(x)/(x+1) dx = -2*Integral_{x=0..1} log(x)*log(1+x)/x dx.

%F Equals 3*A002117/2 = 2*A197070.

%F Equals A258750/Pi. - _Hugo Pfoertner_, Jun 10 2024

%F Equals Integral_{x=0..1} arctanh^3(x)/x^2 [Li]. - _R. J. Mathar_, Jun 11 2024

%e 1.80308535473939142809960724226717498614747943851...

%p 3*Zeta(3)/2 ; evalf(%) ;

%t RealDigits[3*Zeta[3]/2, 10, 120][[1]] (* _Amiram Eldar_, Jun 10 2024 *)

%o (PARI) 3*zeta(3)/2 \\ _Michel Marcus_, Jun 10 2024

%Y Cf. A002117, A197070, A258750.

%K nonn,cons

%O 1,2

%A _R. J. Mathar_, Jun 07 2024