login
A373513
Decimal expansion of 3*zeta(3)/2.
0
1, 8, 0, 3, 0, 8, 5, 3, 5, 4, 7, 3, 9, 3, 9, 1, 4, 2, 8, 0, 9, 9, 6, 0, 7, 2, 4, 2, 2, 6, 7, 1, 7, 4, 9, 8, 6, 1, 4, 7, 4, 7, 9, 4, 3, 8, 5, 1, 0, 7, 4, 8, 3, 2, 2, 6, 8, 8, 4, 0, 7, 3, 3, 3, 0, 1, 2, 7, 5, 7, 3, 0, 8, 6, 7, 9, 4, 6, 9, 6, 3, 5, 2, 7, 9, 6, 8, 3, 8, 1, 0
OFFSET
1,2
LINKS
R. Barbieri, J. A. Mignaco and E. Remiddi, Electron form factors up to fourth order. I., Il Nuovo Cim. 11A (4) (1972) 824-864, Table II (2).
Chenli Li, Wenchang Chu, Improper integrals involving powers of Inverse Trigonometric and hyperbolic Functions, Mathematics 10 (16) (2022) 2980
FORMULA
Equals Integral_{x=0..1} log^2(x)/(x+1) dx = -2*Integral_{x=0..1} log(x)*log(1+x)/x dx.
Equals 3*A002117/2 = 2*A197070.
Equals A258750/Pi. - Hugo Pfoertner, Jun 10 2024
Equals Integral_{x=0..1} arctanh^3(x)/x^2 [Li]. - R. J. Mathar, Jun 11 2024
EXAMPLE
1.80308535473939142809960724226717498614747943851...
MAPLE
3*Zeta(3)/2 ; evalf(%) ;
MATHEMATICA
RealDigits[3*Zeta[3]/2, 10, 120][[1]] (* Amiram Eldar, Jun 10 2024 *)
PROG
(PARI) 3*zeta(3)/2 \\ Michel Marcus, Jun 10 2024
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Jun 07 2024
STATUS
approved