login
A373362
a(n) = gcd(A001414(n), A276085(n)), where A001414 is the sum of prime factors with repetition, and A276085 is the primorial base log-function.
11
0, 1, 1, 2, 1, 1, 1, 3, 2, 7, 1, 1, 1, 1, 8, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 2, 1, 12, 2, 1, 1, 8, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 4, 17, 1, 1, 8, 1, 2, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 9, 1, 1, 4, 1, 1, 2, 2, 1, 8, 1, 1, 1, 20, 1, 2, 1, 12, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
As A001414 and A276085 are both fully additive sequences, all sequences that give the positions of multiples of some k > 1 in this sequence are closed under multiplication: For example, A373373, which gives the indices of multiples of 3.
LINKS
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A002110(n) = prod(i=1, n, prime(i));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
A373362(n) = gcd(A001414(n), A276085(n));
CROSSREFS
Cf. A345452 (positions of even terms), A373373 (positions of multiples of 3).
Sequence in context: A336420 A254055 A373367 * A373145 A096815 A193516
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2024
STATUS
approved