OFFSET
1,2
COMMENTS
When is a(n) odd? It appears that a(n) is odd iff n = 2^A279430(m) for some m >= 1.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..530
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n, along with the Catalan function C(x), satisfies the following formulas.
(1) A( A(x) - C(x) ) = x^2.
(2) A(x) = B(x^2) + C(x), where B(A(x)) = x (cf. A373311).
(3) A( A(x-x^2) - x ) = x^2*(1-x)^2.
(4) A(x - x^2) = x + B( x^2*(1-x)^2 ), where B(A(x)) = x.
(5) a(2*n+1) = A000108(2*n) = binomial(4*n,2*n)/(2*n+1) for n >= 0.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 2*x^3 + 3*x^4 + 14*x^5 + 48*x^6 + 132*x^7 + 406*x^8 + 1430*x^9 + 4952*x^10 + 16796*x^11 + 58416*x^12 + 208012*x^13 + 744468*x^14 + ...
where A( A(x) - C(x) ) = x^2 and C(x) = x + C(x)^2.
RELATED SERIES.
C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + ... + A000108(n)*x^n + ...
where C(x) = (1 - sqrt(1 - 4*x))/2.
Let B(x) be the series reversion of A(x), B(A(x)) = x, then
B(x) = x - 2*x^2 + 6*x^3 - 23*x^4 + 90*x^5 - 370*x^6 + 1568*x^7 - 6802*x^8 + 30032*x^9 - 134422*x^10 + ... + A373311(n)*x^n + ...
where B(x^2) = A(x) - C(x).
SPECIFIC VALUES.
A(-1/4) = -0.151237013399100067547709926686882225273392538412193459646...
where A( A(-1/4) - (1 - sqrt(2))/2 ) = 1/16
and A(-1/4) = A(1/4) - sqrt(2)/2.
A(1/4) = 0.555869767787447456853134435417966814011443399276280576942...
where A( A(1/4) - 1/2 ) = 1/16.
A(2/9) = 0.378446516826872823814622014107284217010617354150456751846...
where A( A(2/9) - 1/3 ) = 4/81.
A(3/16) = 0.28291412722740108459963161876861779881422380402719433505...
where A( A(3/16) - 1/4 ) = 9/256.
A(1/6) = 0.237675676844188232385878239540046791458387220170448083864...
where A( A(1/6) - (1 - sqrt(1/3))/2 ) = 1/36.
A(1/8) = 0.161604924202227811342812683399402861708621568115394014892...
where A( A(1/8) - (1 - sqrt(1/2))/2 ) = 1/64.
A(1/10) = 0.12250744402428685742299038142775672992059218375368127702...
where A( A(1/10) - (1 - sqrt(3/5))/2 ) = 1/100.
PROG
(PARI) {a(n) = my(A = x +x*O(x^n), C = serreverse(x-x^2 +x*O(x^n)));
for(i=1, #binary(n), A = C + subst(serreverse(A), x, x^2)); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 07 2024
STATUS
approved