login
A373122
Expansion of B(x)^2, where B(x) is the g.f. of A108483.
0
1, 2, 1, 0, 0, -2, -2, 2, 4, 2, -1, -4, -6, -4, 5, 12, 7, -2, -10, -16, -9, 12, 25, 16, -5, -24, -34, -18, 26, 54, 36, -8, -50, -70, -35, 48, 102, 70, -16, -100, -134, -62, 93, 194, 137, -26, -186, -246, -114, 164, 341, 244, -47, -338, -434, -192, 289, 598, 433, -76, -583, -748, -325, 486, 1001
OFFSET
0,2
FORMULA
G.f.: C(x) / D(x), where C(x) is the g.f. of A375149 and D(x) is the g.f. of A375159.
PROG
(PARI) my(N=70, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k-2))*(1-x^(7*k-5))/((1-x^(7*k-1))*(1-x^(7*k-6))))^2)
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 03 2024
STATUS
approved