login
A373120
Number of distinct possible binary ranks of integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1).
0
1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 33, 43, 55, 70, 89, 109, 136, 167, 206, 251, 306, 371, 445, 535, 639, 759, 904, 1069, 1262, 1489, 1747, 2047, 2390, 2784, 3237, 3754, 4350, 5027, 5798, 6680, 7671, 8808, 10091, 11543, 13190, 15040, 17128, 19477, 22118
OFFSET
0,4
EXAMPLE
The partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1), with respective binary ranks 8, 5, 4, 4, 4, so a(4) = 3.
MATHEMATICA
Table[Length[Union[Total[2^(#-1)]&/@IntegerPartitions[n]]], {n, 0, 15}]
CROSSREFS
The strict case is A000009.
A048675 gives binary rank of prime indices, distinct A087207.
A118462 lists binary ranks of strict integer partitions, row sums A372888.
A277905 groups all positive integers by binary rank of prime indices.
A372890 adds up binary ranks of integer partitions.
Binary indices (A048793):
- length A000120, complement A023416
- min A001511, opposite A000012
- max A029837 or A070939, opposite A070940
- sum A029931, product A096111
- reverse A272020
- complement A368494, sum A359400
- opposite complement A371571, sum A359359
- opposite A371572, sum A230877
Sequence in context: A175868 A035950 A175864 * A133153 A100673 A224216
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 26 2024
STATUS
approved