login
A373029
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) is the number of distinct partitions p of n such that max(p) is a multiple of k.
2
1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 4, 2, 2, 1, 1, 1, 0, 5, 3, 1, 2, 1, 1, 1, 0, 6, 3, 1, 2, 2, 1, 1, 1, 0, 8, 4, 3, 2, 2, 2, 1, 1, 1, 0, 10, 5, 3, 2, 3, 2, 2, 1, 1, 1, 0, 12, 6, 4, 2, 3, 3, 2, 2, 1, 1, 1, 0, 15, 7, 6, 3, 3, 4, 3, 2, 2, 1, 1, 1, 0, 18, 9, 6, 4, 3, 4, 4, 3, 2, 2, 1, 1, 1
OFFSET
0,8
FORMULA
For k > 0, g.f. of column k: Sum_{i>=0} x^(k*i) * Product_{j=1..k*i-1} (1+x^j).
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 2, 1, 1;
0, 2, 1, 1, 1;
0, 3, 1, 1, 1, 1;
0, 4, 2, 2, 1, 1, 1;
0, 5, 3, 1, 2, 1, 1, 1;
0, 6, 3, 1, 2, 2, 1, 1, 1;
0, 8, 4, 3, 2, 2, 2, 1, 1, 1;
0, 10, 5, 3, 2, 3, 2, 2, 1, 1, 1;
0, 12, 6, 4, 2, 3, 3, 2, 2, 1, 1, 1;
0, 15, 7, 6, 3, 3, 4, 3, 2, 2, 1, 1, 1;
0, 18, 9, 6, 4, 3, 4, 4, 3, 2, 2, 1, 1, 1;
CROSSREFS
Row sums give A373030.
Column k=0..3 give A000007, A000009, A026838, A372893.
T(2n,n) gives A000009.
Cf. A363048.
Sequence in context: A083661 A029369 A255315 * A125072 A162642 A366246
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 20 2024
STATUS
approved