login
A372893
Number of distinct partitions p of n such that max(p) == 0 mod 3.
3
1, 0, 0, 1, 1, 1, 2, 1, 1, 3, 3, 4, 6, 6, 7, 10, 11, 12, 16, 17, 20, 26, 29, 34, 42, 47, 54, 66, 74, 85, 101, 113, 129, 151, 170, 193, 224, 252, 286, 329, 370, 418, 478, 536, 603, 686, 767, 862, 974, 1088, 1218, 1370, 1527, 1704, 1910, 2124, 2366, 2643, 2934, 3260, 3631
OFFSET
0,7
FORMULA
G.f.: Sum_{k>=0} x^(3*k) * Product_{j=1..3*k-1} (1+x^j).
A000009(n) = a(n) + A373012(n) + A373013(n).
EXAMPLE
a(9) = 3 counts these partitions: 9, 63, 621.
CROSSREFS
Column 3 of A373029.
Sequence in context: A269699 A035636 A104554 * A293304 A152414 A184834
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 20 2024
STATUS
approved