login
A372823
Sequence formed as follows: for each k >= 0, insert between 3^k and 3^(k+1) the least power of 2 than is in the interval [3^k, 3^(k+1)], and then arrange the resulting numbers in nondecreasing order.
2
1, 1, 3, 4, 9, 16, 27, 32, 81, 128, 243, 256, 729, 1024, 2187, 4096, 6561, 8192, 19683, 32768, 59049, 65536, 177147, 262144, 531441, 1048576, 1594323, 2097152, 4782969, 8388608, 14348907, 16777216, 43046721, 67108864, 129140163, 134217728, 387420489
OFFSET
0,3
EXAMPLE
3^0 <= 2^0 < 3^1 < 2^2 < 3^2 < 2^4 < 3^3 < ...
MAPLE
[seq(op([3^i, 2^ceil(log[2](3^i))]), i=0..50)]; # Robert Israel, May 22 2024
MATHEMATICA
a[n_] := If[EvenQ[n], 3^(n/2), 2^Ceiling[((n - 1)/2) Log[3]/Log[2]]]
Table[a[n], {n, 0, 37}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 18 2024
STATUS
approved