OFFSET
-5,2
COMMENTS
LINKS
Paolo Xausa, Table of n, a(n) for n = -5..1000
Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18.
Clark Kimberling, The Zeckendorf array equals the Wythoff array, Fibonacci Quarterly 33 (1995) 3-8.
Index entries for linear recurrences with constant coefficients, signature (1,0,1).
FORMULA
a(n) = A179070(n+5) for n >= -3. - Pontus von Brömssen, May 13 2024
MATHEMATICA
LinearRecurrence[{1, 0, 1}, {0, 2, 1}, 50] (* Paolo Xausa, May 25 2024 *)
CROSSREFS
The k-th row: A000930(n+2) (k=1), this sequence (k=2).
The k-th column: A020942 (k=1), A064105 (k=2), A064106 (k=3), A372749 (k=4), A372750 (k=5), A372752 (k=6), A372756 (k=7), A372757 (k=8).
KEYWORD
nonn,easy
AUTHOR
A.H.M. Smeets, May 12 2024
STATUS
approved