login
A372741
Coreful highly touchable numbers: numbers m > 0 such that a record number of numbers k have m as the sum of the aliquot coreful divisors (A336563) of k.
0
1, 2, 6, 30, 210, 930, 2310, 2730, 30030, 71610, 84630
OFFSET
1,2
COMMENTS
A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
Indices of records of A372739.
The corresponding record values are 0, 1, 3, 6, 8, 9, 11, 12, 15, 16, 17, ... .
a(12) > 2*10^5.
EXAMPLE
a(1) = 1 since it is the least number that is not the sum of aliquot coreful divisors of any number.
a(2) = 2 since it is the least number that is the sum of aliquot coreful divisors of one number: 2 = A336563(4).
a(3) = 6 since it is the least number that is the sum of aliquot coreful divisors of 3 numbers: 6 = A336563(8) = A336563(12) = A336563(18), and there is no number between 2 and 6 that is the sum of aliquot coreful divisors of exactly 2 numbers.
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[m_] := Module[{v = Table[0, {m}], vm = -1, w = {}, i}, Do[i = s[k]; If[1 <= i <= m, v[[i]]++], {k, 1, m^2}]; Do[If[v[[k]] > vm, vm = v[[k]]; AppendTo[w, k]], {k, 1, m}]; w]; seq[1000]
PROG
(PARI) s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] - 1) - 1) - n; }
lista(nmax) = {my(v = vector(nmax), vmax = -1, i); for(k = 1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++)); for(k = 1, nmax, if(v[k] > vmax, vmax = v[k]; print1(k, ", "))); }
CROSSREFS
Similar sequences: A238895, A325177, A331972, A331974.
Sequence in context: A211211 A127482 A375526 * A118747 A377707 A375271
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, May 12 2024
STATUS
approved