%I #19 Aug 26 2024 02:10:26
%S 1,2,5,10,17,33,65,129,257,514,1027,2049,4097,8193,16385,32770,65537,
%T 131073,262145,524289,1048577,2097154,4194305,8388609,16777217,
%U 33554433,67108865,134217730,268435457,536870913,1073741826,2147483649,4294967297,8589934594
%N Least squarefree number >= 2^n.
%F a(n) = A005117(A372540(n)).
%F a(n) = A067535(2^n). - _R. J. Mathar_, May 31 2024
%e The terms together with their binary expansions and binary indices begin:
%e 1: 1 ~ {1}
%e 2: 10 ~ {2}
%e 5: 101 ~ {1,3}
%e 10: 1010 ~ {2,4}
%e 17: 10001 ~ {1,5}
%e 33: 100001 ~ {1,6}
%e 65: 1000001 ~ {1,7}
%e 129: 10000001 ~ {1,8}
%e 257: 100000001 ~ {1,9}
%e 514: 1000000010 ~ {2,10}
%e 1027: 10000000011 ~ {1,2,11}
%e 2049: 100000000001 ~ {1,12}
%e 4097: 1000000000001 ~ {1,13}
%e 8193: 10000000000001 ~ {1,14}
%e 16385: 100000000000001 ~ {1,15}
%e 32770: 1000000000000010 ~ {2,16}
%e 65537: 10000000000000001 ~ {1,17}
%e 131073: 100000000000000001 ~ {1,18}
%e 262145: 1000000000000000001 ~ {1,19}
%e 524289: 10000000000000000001 ~ {1,20}
%t Table[NestWhile[#+1&,2^n,!SquareFreeQ[#]&],{n,0,10}]
%o (PARI) a(n) = my(k=2^n); while (!issquarefree(k), k++); k; \\ _Michel Marcus_, May 29 2024
%o (Python)
%o from itertools import count
%o from sympy import factorint
%o def A372683(n): return next(i for i in count(1<<n) if max(factorint(i).values(),default=1)==1) # _Chai Wah Wu_, Aug 26 2024
%Y For primes instead of powers of two we have A112926, opposite A112925, sum A373197, length A373198.
%Y Counting zeros instead of all bits gives A372473, firsts of A372472.
%Y These are squarefree numbers at indices A372540, firsts of A372475.
%Y Counting ones instead of all bits gives A372541, firsts of A372433.
%Y The opposite (greatest squarefree number <= 2^n) is A372889.
%Y The difference from 2^n is A373125.
%Y For prime instead of squarefree we have:
%Y - bits A372684, firsts of A035100
%Y - zeros A372474, firsts of A035103
%Y - ones A372517, firsts of A014499
%Y A000120 counts ones in binary expansion (binary weight), zeros A080791.
%Y A005117 lists squarefree numbers.
%Y A030190 gives binary expansion, reversed A030308, length A070939 or A029837.
%Y A061398 counts squarefree numbers between primes (exclusive).
%Y A077643 counts squarefree terms between powers of 2, run-lengths of A372475.
%Y A143658 counts squarefree numbers up to 2^n.
%Y Cf. A029931, A048793, A049095, A049096, A059015, A069010, A076259, A077641, A211997, A230877.
%K nonn
%O 0,2
%A _Gus Wiseman_, May 26 2024