login
A372672
a(n) = phi(10 * n)/4.
1
1, 2, 2, 4, 5, 4, 6, 8, 6, 10, 10, 8, 12, 12, 10, 16, 16, 12, 18, 20, 12, 20, 22, 16, 25, 24, 18, 24, 28, 20, 30, 32, 20, 32, 30, 24, 36, 36, 24, 40, 40, 24, 42, 40, 30, 44, 46, 32, 42, 50, 32, 48, 52, 36, 50, 48, 36, 56, 58, 40, 60, 60, 36, 64, 60, 40, 66, 64, 44, 60, 70, 48, 72, 72, 50, 72, 60, 48
OFFSET
1,2
FORMULA
G.f.: Sum_{k>=1} mu(10 * k) * x^k / (1 - x^k)^2, where mu() is the Moebius function (A008683).
Multiplicative with a(p^e) = p^e if p = 2 or 5, and (p-1)*p^(e-1) otherwise.
PROG
(PARI) a(n) = eulerphi(10*n)/4;
(PARI) my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, moebius(10*k)*x^k/(1-x^k)^2))
CROSSREFS
Partial sums gives A372639.
Column k=10 of A372673.
Cf. A008683.
Sequence in context: A214793 A199088 A293974 * A346036 A138557 A129303
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, May 10 2024
STATUS
approved