login
a(n) is the greatest common divisor of n, sigma(n) and A003961(n), where A003961(n) is fully multiplicative function with a(prime(i)) = prime(i+1).
6

%I #8 May 19 2024 14:02:24

%S 1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1,

%T 1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1,1,3,1,1,

%U 1,1,1,3,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1

%N a(n) is the greatest common divisor of n, sigma(n) and A003961(n), where A003961(n) is fully multiplicative function with a(prime(i)) = prime(i+1).

%H Antti Karttunen, <a href="/A372565/b372565.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%o (PARI)

%o A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A372565(n) = gcd([n, sigma(n), A003961(n)]);

%Y Cf. A000203, A003961, A372566 (positions of terms > 1).

%Y Greatest common divisor of any two of the following: A009194, A322361, A342671.

%K nonn,easy

%O 1,6

%A _Antti Karttunen_, May 19 2024