login
A372519
Nonnegative numbers k such that 0 = Sum_{j=0..k} K(k, j) where K(k, j) is the Kronecker symbol (k / j).
1
0, 3, 5, 8, 12, 13, 17, 18, 20, 21, 24, 27, 28, 29, 32, 33, 37, 40, 41, 43, 44, 45, 48, 52, 53, 56, 57, 60, 61, 65, 68, 69, 72, 73, 76, 77, 80, 84, 85, 88, 89, 92, 93, 96, 97, 101, 104, 105, 108, 109, 112, 113, 116, 117, 120, 124, 125, 126, 128, 129, 132, 133
OFFSET
1,2
MAPLE
K := (n, k) -> NumberTheory:-KroneckerSymbol(n, k):
isA := n -> local k; evalb(0 = add(K(n, k), k = 0..n)):
select(isA, [seq(0..133)]);
PROG
(PARI) isok(k) = sum(j=0, k, kronecker(k, j)) == 0; \\ Michel Marcus, May 17 2024
CROSSREFS
Sequence in context: A088971 A153400 A289076 * A342779 A100464 A114891
KEYWORD
nonn
AUTHOR
Peter Luschny, May 16 2024
STATUS
approved