login
A372505
a(n) = log_2(A368473(n)).
1
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1
OFFSET
1,15
COMMENTS
The first position of k, for k = 0, 1, ..., is 1, 4, 15, 126, 1134, ..., which is the position of A085629(2^k) in A138302.
LINKS
FORMULA
a(n) = log_2(A005361(A138302(n))).
MATHEMATICA
f[n_] := Module[{p = Times @@ FactorInteger[n][[;; , 2]], e}, e = IntegerExponent[p, 2]; If[p == 2^e, e, Nothing]]; Array[f, 150]
PROG
(PARI) lista(kmax) = {my(p, e); for(k = 1, kmax, p = vecprod(factor(k)[, 2]); e = valuation(p, 2); if(p >> e == 1, print1(e, ", "))); }
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, May 04 2024
STATUS
approved