login
A372446
a(n) = A372358(A372443(n)).
5
14, 28, 10, 26, 18, 62, 116, 44, 14, 92, 50, 78, 60, 122, 82, 222, 260, 232, 114, 46, 44, 78, 252, 106, 138, 410, 354, 774, 1064, 218, 2, 1366, 336, 276, 228, 16, 8, 2, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
These are the bitmasks (or symmetric differences) obtained when the n-th iterate of 27 with Reduced Collatz-function R [= A372443(n), where R(n) = A000265(3*n+1)] is xored with that term of A086893 that has the same binary length. The binary expansions of the terms of A086893 are always of the form 10101...0101 (i.e., alternating 1's and 0's starting and ending with 1) when the binary length is odd, and of the form 110101...0101 (i.e., 1 followed by alternating 1's and 0's, and ending with 1) when n is even. Note that for all n >= 1, R(A086893(2n-1)) = 1, and R(A086893(2n)) = 5 (with R(5) = 1), so the first zero here, a(39) = 0 indicates that the iteration will soon have reached the terminal 1, and indeed, A372443(41) = 1.
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A000523(n) = logint(n, 2);
A086893(n) = (if(n%2, 2^(n+1), 2^(n+1)+2^(n-1))\3);
A372358(n) = bitxor(A086893(1+A000523(n)), n);
A372443(n) = { my(x=27); while(n, x=A000265(3*x+1); n--); (x); };
CROSSREFS
Column 14 of A372361.
Sequence in context: A331099 A192354 A215970 * A040182 A335476 A296755
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 03 2024
STATUS
approved