Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #17 Jun 30 2024 16:29:44
%S 1001,4199,65231,347261,1009091,1201289,7566179,11592209,22027871,
%T 29884301,97543451,234118799,564234809,627947039,682238471,1296207281,
%U 2198678291,2901757409,3050714441,3283574069,4626836849,4881262679,5700149369,6542683061,6605851859,7956061979
%N Products of prime triples (p, p+4, p+6) where p = A022005(n).
%C Subsequence of A120944, subsequence of A007304.
%C Terms are congruent to 5 (mod 6), since A022005(n) is congruent to 1 mod 6, and 5+4 and 5+6 are congruent to 5 and 1 (mod 6), respectively. The product 1*5*1 is congruent to 5 (mod 6).
%e a(1) = 1001 = 7 * 11 * 13.
%e a(2) = 4199 = 13 * 17 * 19.
%e a(3) = 65231 = 37 * 41 * 43, etc.
%t Map[Times @@ NextPrime[#, {0, 1, 2}] &, Select[Prime@ Range[320], AllTrue[{# + 4, # + 6}, PrimeQ] &]]
%Y Cf. A007304, A016969, A022005, A120944.
%K nonn,easy
%O 1,1
%A _Michael De Vlieger_, Jun 29 2024