login
A372347
a(n) = Sum_{j=0..n} p(n - j, j) where p(n, x) = Sum_{k=0..n} k! * Stirling1(n, k) * x^k.
1
1, 1, 2, 4, 12, 52, 334, 2866, 31902, 439510, 7372150, 147351714, 3460114654, 94073798158, 2926942982790, 103161703653178, 4084845678671086, 180433041383154870, 8836346732709839206, 477142911818397135058, 28265453383985064929934
OFFSET
0,3
MAPLE
p := n -> local k; add(k!*Stirling1(n, k)*x^k, k = 0..n):
a := n -> local j; add(subs(x=j, p(n - j)), j = 0..n):
seq(a(n), n = 0..21);
CROSSREFS
Cf. A225479.
Sequence in context: A058767 A075876 A222470 * A227037 A158569 A020106
KEYWORD
nonn
AUTHOR
Peter Luschny, Apr 28 2024
STATUS
approved