login
A372303
Primes p such that there exists prime q < p for which p*q^2 + 1 is divisible by q^2 + p and 1 + p.
0
7, 11, 23, 31, 41, 47, 59, 71, 79, 131, 137, 151, 167, 239, 311, 359, 443, 461, 701, 839, 911, 1021, 1039, 1367, 1721, 1847, 2207, 2351, 2551, 2861, 3191, 3719, 4019, 4691, 4759, 5039, 5167, 5279, 6971, 7481, 7853, 7919, 9311, 9619, 9689, 10607, 10739, 11447
OFFSET
1,1
EXAMPLE
For n=4, a(4)=31 and q=17 satisfy the desired divisibilities.
MAPLE
P:= select(isprime, [2, seq(i, i=3..100000, 2)]):
nP:= nops(P);
R:= NULL:
for i from 2 to nP do
p:= P[i];
for j from 1 to i-1 do
q:= P[j];
if p*q^2 + 1 mod ilcm(p+1, q^2+p) = 0 then
R:= R, p;
break
fi
od od:
R;
CROSSREFS
Sequence in context: A271043 A089056 A210981 * A255769 A175625 A082496
KEYWORD
nonn
AUTHOR
Stephen Bartell, May 22 2024
STATUS
approved